
Simplifying Current Decentralized Micropayment
Channels

Ruoyu Hou
rhou@ucsd.edu

Jing Wen Lin
jwl002@ucsd.edu

Stanley Park
stpark@ucsd.edu

Zhekai Wang
zhw040@ucsd.edu

Sheffield Nolan
Sheffield.Nolan@franklintempleton.com

Abstract

Ethereum has allowed people to make payments of Ether on a decentralized
network. However, one of the main drawbacks of sending payments through
Ethereum are gas fees. As adoption of Ethereum grows, the need to minimize
gas fees is important for the user’s experience. One solution is to create a pay-
ment channel, which will allow a sender to make continuous payments to a
receiver within a predefined time period but only requiring a single transac-
tion fee from both parties. One current approach to setting up and using this
requires five separate applications: MetaMask, Solidity code, Remix IDE, Se-
polia Etherscan, and Javascript. However, this overly complicates the process.
In this project, we condense the functionalities of four of the five applications,
namely Solidity code, Remix IDE, Sepolia Etherscan, and JavaScript, required
to create and use a payment channel into a single decentralized application,
which reduces the number of applications required to just two: MetaMask
and this decentralized application.

Website: https://stpark01.github.io/about-micropayment-channel-dapp/
Code: https://github.com/Ryhouu/capstone-web-dashboard

1 Introduction . 2
2 Methods . 3
3 Results . 31
4 Discussion . 31

References . 31

https://stpark01.github.io/about-micropayment-channel-dapp/
https://github.com/Ryhouu/capstone-web-dashboard

1 Introduction
Ethereum has allowed people to make payments of Ether on a decentralized network. How-
ever, one of the main drawbacks of sending payments through Ethereum are gas fees. As
adoption of Ethereum grows, the need to minimize gas fees is important for the user’s ex-
perience. One solution is to create a payment channel, which will allow a sender to make
continuous payments to a receiver within a predefined time period but only requiring a sin-
gle transaction fee from both parties: one for opening the payment channel by the sender
and another for closing the payment channel by the receiver. One current approach to set-
ting up and using this requires five separate applications: MetaMask, Solidity code, Remix
IDE, Sepolia Etherscan, and Javascript. However, this overly complicates the process. In
this project, we condense the functionalities of four of the five applications, namely Solidity
code, Remix IDE, Sepolia Etherscan, and JavaScript, required to create and use a payment
channel into a single decentralized application, which reduces the number of applications
required to just two: MetaMask and this decentralized application. In other words, we
successfully created a decentralized application that along with MetaMask can create and
interact with payment channels on the Sepolia Testnet.

1.1 Literature Review
Bitcoin is the first decentralized cryptocurrency. It allows people to send and receive Bit-
coin, but sending Bitcoin costs a transaction fee in Bitcoin to complete each time (Nakamoto
2008). This was implemented in order to keep the Bitcoin network stable. While transac-
tion fees in decentralized cryptocurrencies like Bitcoin and Ethereum are necessary, it is
also an annoyance for the user. The idea of payment channels was one potential solution to
this problem. This idea can come into fruition through Ethereum smart contracts. A simple
example of a payment channel smart contract has already been created by Soliditylang,
which allows the creation of a one-way payment channel between a sender and a receiver.
However, one current approach to setting up and using this requires five separate applica-
tions. The purpose of this project is to try and minimize the complexity of setting up this
provided payment channel smart contract in the Sepolia Testnet by condensing four of the
five applications into a single application.

1.2 Data Description
1. Sepolia Ether (decimal numbers): It is the native cryptocurrency used in the Sepolia
Testnet. Importantly, Sepolia Ether has no real world value, and it is the currency used in
the payment channels created in this application.
2. User’s Externally Owned Account (42-character hexadecimal): Ethereum account ad-
dress, which will be used to deploy to the Sepolia Testnet, interact with the Sepolia Testnet,
and create/verify payment signatures through this application.
3. Recipient’s Externally Owned Account (42-character hexadecimal): Ethereum account

2

https://docs.soliditylang.org/en/latest/solidity-by-example.html#micropayment-channel

address the sender wants to create a payment channel with.
3. Expiration (int): The number of time periods until a payment channel expires.
4. New Expiration (int): Unix timestamp the sender wants to extend a payment channel to
(must be greater than the current expiration’s Unix timestamp).
4. Contact Address: Payment channel’s contract address in the Sepolia Testnet.
5. Signature (hexadecimal): Payment signature created by a sender for a specific payment
channel that they own.

2 Methods

2.1 Sepolia Testnet
The Sepolia Testnet is similar to the Ethereum network, except it uses testnet Ether. Sepolia
Ether has no real world value unlike Ether.

2.2 Micropayment Channel
The code for the micropayment channel was created by Soliditylang (et al. 2019).

2.3 Frontend
2.3.1 Overview

Our framework choices for the web dashboard are Next.js with TypeScript and React.
This combination is not only a technical decision but a strategic one - aimed at enhancing
performance, scalability, and developer efficiency.
First, React is a popular JavaScript library for building user interfaces. Its component-based
architecture allows developers to create reusable UI elements, streamlining the develop-
ment process and ensuring consistency across the web dashboard.

1. React’s efficient updating mechanism, utilizing a virtual DOM, ensures that the user
interface remains responsive and dynamic. This is particularly important for our
dApp, where users expect real-time updates and interactive elements.

2. By encapsulating UI logic into components, React makes the codebase more man-
ageable and modular. As developers, we can reuse components across different parts
of the application in order to reduce development time and ensure a cohesive user
experience.

Next.js is a React framework that brings plenty of benefits to web development, particularly
in areas where performance and search engine optimization (SEO). The use of React within

3

https://nextjs.org/

Next.js enables the creation of a component-based architecture, making the user interface
modular and easy to manage. React’s efficient update and rendering system ensures a
seamless user experience, essential for browsing and interacting with our dashboard and
smart contracts.

1. Server-Side Rendering (SSR): Next.js allows for server-side rendering of web pages,
which means that the server pre-renders each page into HTML before sending it to
the client’s browser. This significantly improves the loading time of the web dash-
board. Particularly, Next.js supports Automatic Code Splitting, which splits the code
into small bundles, loading only the necessary code for the page the user is visiting.
This reduces the amount of data transferred over the network, leading to faster page
loads and a smoother browsing experience. Moreover, SSR is beneficial for SEO,
as it ensures that search engines can crawl and index the platform’s content more
efficiently, making it easier for potential users to discover SecureArt online.

2. Pathway to Progressive Web App (PWA): Next.js facilitates the development of Pro-
gressive Web Apps, enabling SecureArt to offer offline functionality and app-like
experiences. PWAs are crucial for engaging users in areas with unreliable internet
connections, ensuring that the platform remains accessible and functional.

And TypeScript is a superset of JavaScript. Integrating TypeScript with Next.js and React
brings strong typing to the project, improving maintainability and developer productivity.
This combination ensures robust code quality, reducing bugs and facilitating scalability.

2.3.2 Dependencies

The following dependencies are crucial for the frontend development, styling, interaction
with Ethereum smart contracts, and compilation of Solidity code. First, we need to install
Node.js and npm (Node Package Manager), and then these commands should be executed
in the terminal or command prompt.

1. Next.js, React, and React-DOM:
npm install next@latest react@latest react-dom@latest

2. UI Components and Styling: we use the MUI ecosystem. @mui/material offers pre-
designed material UI components, while @emotion/react and @emotion/styled
are used for styling these components. Also, styled-components allows us to write
actual CSS code to style our components; notistack enhances snackbars provided
by Material-UI, allowing for easier customization and management.

npm install @mui/material @emotion/react @emotion/styled
npm install @mui/icons-material
npm install styled-components
npm install @mui/x-date-pickers
npm install @mui/x-date-pickers-pro
npm install notistack

4

https://mui.com/material-ui/

3. Smart Contract Interaction: ethereumjs-abi is used to encode and decode data ac-
cording to the smart contract ABI (Application Binary Interface). ethereumjs-util
is a utility library containing common functions for Ethereum, such as account gen-
eration, hashing functions, and signature validation. ethers is a library that enables
developers to send transactions, interact with smart contracts, and handle wallets.
They are crucial for interacting with smart contracts and handling Ethereum-specific
operations in the project.

npm install ethereumjs-abi
npm i --save-dev @types/ethereumjs-abi
npm install ethereumjs-util@latest
npm install ethers

4. Solidity Compiler: solc is used for compiling Solidity source code (.sol files) into
bytecode.

npm install solc

5. Data Management: We use Supabase, which is based on PostgreSQL for our data
management. supabase-js is the official JavaScript client that allows us to interact
with Supabase, an open-source Firebase alternative, providing functionalities like
authentication, database interactions, and real-time subscriptions.

npm install @supabase/supabase-js

6. Other dependencies:
npm install sonner
npm install dayjs
npm install fs

2.3.3 Run the Development Server

To run the development server locally:
npm run dev
or
yarn dev
or
pnpm dev
or
bun dev
Then open http://localhost:3005 with your browser to see the result.

5

http://localhost:3005

2.3.4 Pages

Homepage Figure 1 shows the breakdowns of all the foundational services for both senders
and receivers.

Figure 1: Services Workflow

Figure 2 shows the current layout of our homepage. It has a navigator bar with four buttons:
• Send (sender): Send SepoliaETH to another wallet account.
• Claim (receiver): Claim SepoliaETH sent from another account to you.
• Split a Bill (multiple senders): Mutually send SepoliaETH to another wallet account.
• Transactions: View your recent transactions.

When a user clicks Send, it will direct them to another page with buttons that continue
sending them to different pages for each of the functionalities:

• Deploy Payment Channel
• Sign Payment
• Extend Expiration
• Claim Timeout

and when a user clicks Receive (Claim), it will direct them to a page with buttons for
• Verify Payment
• Claim Payment

6

Figure 2: Homepage

7

Account Menu Note that before the user proceeds to any of the above services, they
should connect their MetaMask Wallet to the website first. To help with the log-in check,
our dashboard will pop up an alert to inform them to connect their MetaMask wallet if they
haven’t when they attempt to start a function.
Figure 3 shows the panel for the Account Menu (the left side is a sender account and the
right side is a receiver account). The menu items seem alike, but specifically, the ”My
Payment Channels” and ”My Signatures” tabs on senders’ side will toggle on the Payment
Channels table and Payment Signatures table, whereas the tabs on receivers’ side will
toggle on the Payment Channels table and Verified Signatures table (both only show the
data related to the connected MetaMask account).

Figure 3: Account Menu - Sender (left) & Receiver (right)

The Account object data schema is below:

export interface AccountDataSchema {
id: string,
account: string,
isSender: boolean,
isReceiver: boolean

}

8

Send Payment Page As described before, the Send Payment Page has four actions:
• Create Payment Channel
• Sign Payment (Create Payment Signature)
• Extend Channel
• Claim Timeout

Each action is independent and holds temporary data in the cache respectively.
For the contract/signature data forms on the dashboard, we use the schema as follow:

export interface PaymentChannelDataSchema {
id: string,
senderAddress: string,
recipientAddress: string,
escrowAmount: number, // eth
escrowAmountWei: number,
contractAddress: string,
signature: string,
message: string,
isVerified: boolean,
isDeployed: boolean
claimAmount: number,
claimAmountWei: number,
closed: boolean,
expirationDate: Date,
transactionHash: string,
balance: number // eth

}

9

1. Create Payment Channel. Figure 4 shows the sequence diagram.

Figure 4: Create Payment Channel, Sequence Diagram

Figure 5 shows the filled form in the first step. Here, recipientAddress, escrowAmount
and escrowAmountWei, expirationDate are changed accordingly. Particularly,
we use Material-UI’s LocalizationProvider and DateTimePicker components
to create a date and time picker for selecting an expiration date and time, where the
selected value cannot be in the past, and communicates the selected value to the
parent component or handles it as needed.
Then, Figure 6 shows the review page for the user to confirm the information they
filled in is correct;
Figures 7 and 8 exemplify the progress: when the user clicks ”deploy”, it will trigger
MetaMask to let the user confirm the transaction, and once the contract is deployed
on Sepolia, our website will show the contract address with a ”copy” button, and
allow the user to view the transaction and contract on the Sepolia Explorer externally
for their convenience.
Then, Figure 9 shows that the contract just deployed by the user is logged in our
database and can be viewed as in the table ”Account Menu - My Payment Channels”.

10

Figure 5: Create Payment Channel, Basic Info Form

Figure 6: Create Payment Channel, Review Form

11

Figure 7: Create Payment Channel, Deploy

Figure 8: Create Payment Channel, Deploy Result

12

Figure 9: Create Payment Channel, Log

13

2. Create Payment Signature. Figure 10 shows the sequence diagram.

Figure 10: Create Payment Signature, Sequence Diagram

Figure 11 shows the filled form with Partial<PaymentChannelDataSchema> and
the options checkbox. The user can copy the contract address easily either from
their previous step ”Create Payment Channel”, or from ”Account Menu - My Payment
Channels”.

Figure 11: Create Payment Signature, Basic Info and Options

Then, Figures 12 and 13 exemplify the transaction of signing the payment and the
result panel, where the user can copy the message and signature easily.
Figure 14 shows that the signature just created by the user is logged in our database
and can be viewed as in the table ”Account Menu - My Signatures” and these ad-
dresses can be accessed and copied for later uses.

14

Figure 12: Create Payment Signature, Transaction

Figure 13: Create Payment Signature, Result

15

Figure 14: Create Payment Signature, Log

16

3. Extend Channel. Figure 15 shows the sequence diagram.

Figure 15: Extend Payment Channel, Sequence Diagram

Figure 16 shows that once the user has filled in the contract address to extend, our
dashboard would automatically verify the contract address exists and is valid, and
use ethers to help get the contract expiration and inform the user with an info alert.
Figures 17 and 18 show the transaction and its result.

Figure 16: Extend Channel, Basic Info

17

Figure 17: Extend Channel, Transaction

Figure 18: Extend Channel, Result

18

4. Claim Timeout. Figure 19 shows the sequence diagram.

Figure 19: Claim Timeout, Sequence Diagram

Figures 20, 21, and 22 exemplify the user claiming an expired contract and the
escrowed amount would be returned to his account.

Figure 20: Claim Timeout, Basic Info

19

Figure 21: Claim Timeout, Transaction

Figure 22: Claim Timeout, Result

20

Receive Payment Page As described before, the Receive Payment Page has two founda-
tional actions:

• Verify Payment Signature
• Claim Payment (Close Payment Channel)

Similar to the Send Payment Page, each action is independent and holds temporary data
in the cache respectively.
Once the sender has sent the signature and contract address to the receiver through offline
methods like email, the receiver can verify if the signature is valid and effective, and claim
the payment (close the payment channel) after it is verified.

1. Verify Signature. Figure 23 shows the sequence diagram.

Figure 23: Verify Signature, Sequence Diagram

Figures 24 and 25 exemplify the receiver verifying a valid signature.
Figure 26 shows the receiver can access to the verified signatures from ”Account
Menu - My Signatures”.

21

Figure 24: Verify Signature, Basic Info

Figure 25: Verify Signature, Result

22

Figure 26: Verify Signature, Log

23

2. Claim Payment. Figure 27 shows the sequence diagram.

Figure 27: Claim Payment, Sequence Diagram

Figures 28, 29, 30, 31 exemplify the receiver closing a payment channel and receiv-
ing the escrowed amount of ETH.

Figure 28: Claim Payment, Instruction

24

Figure 29: Claim Payment, Select

Figure 30: Claim Payment, Transaction

Figure 31: Claim Payment, Result

25

2.4 Backend
2.4.1 API

Now we support a sequence of POST/GET methods in our API. We are going to use API to
help with deploying contracts, processing signatures, contract utilities, logging data, and
connecting to our database.
Specifically, we have the following POST/GET/UPDATE API methods:

1. Send Payment
(a) Deploy-contract: POST, GET
(b) Create-message: POST

2. Contract Functions
(a) Get-expiration: POST
(b) Verify-contract: POST
(c) Verify-signature: POST

3. Log Data
(a) Payment-channels
(b) Payment-signatures
(c) Verified-signatures

For example, the POST method verify-contract has the structure:
import { NextRequest , NextResponse } from ’ next / server ’ ;
import f s from ’ f s ’ ;
import path from ’ path ’ ;
import { e the r s } from ’ ethers ’ ;

i n t e r f a c e RequestBody {
cont rac tAddress : s t r i n g

}

const alchemyUrl = ’ h t tp s : // eth−sepo l i a . g . alchemy . com/v2/N6jbViZYGzI−M8RUFCcFT3GirYmP6pid ’
cons t prov ider = new ethe r s . JsonRpcProvider (alchemyUrl) ;

export async func t ion POST (req : NextRequest) {
t r y {

const bodyJson : RequestBody = await req . j son () ;
const getCode = await prov ider

. getCode (bodyJson . cont rac tAddres s) ;
const getBalance = await prov ider

. getBalance (bodyJson . cont rac tAddres s) ;

const emptyCode = ’0x ’ ;
cons t bytecodePath = path . r e so l v e (

26

process . cwd() ,
’ con t rac t s ’ ,
’ PaymentChannel . bytecode ’

) ;
cons t bytecode = f s . readF i leSync (bytecodePath , ’ utf8 ’) ;

i f (getCode === emptyCode) {
re turn NextResponse . j son (

{ message : ” Payment channel does not e x i s t . ” } ,
{ s t a t u s : 404 }

)
} e l s e i f (getBalance === Big In t (0)) {

re turn NextResponse . j son (
{ message : ” Payment channel escrowed 0 ETH or c losed . ” } ,
{ s t a t u s : 400 }

)
} e l s e i f (getCode !== bytecode) {

re turn NextResponse . j son (
{ message : ” Payment channel has been a l t e r ed . ” } ,
{ s t a t u s : 405 }

)
}
re turn NextResponse . j son (

{ message : ” Payment channel v e r i f i e d ! ” } ,
{ s t a t u s : 200 }

)
} catch (e r ro r) {

console . log (e r ro r) ;
re turn NextResponse . j son (

{ message : ” I n t e r na l s e r ve r e r ro r . ” } ,
{ s t a t u s : 500 }

)
}

}

And the POST/GET methods for updating and fetching payment channels data for a given
user account are
import { NextRequest , NextResponse } from ’ next / server ’ ;
import { supabase } from ’@/app/ s r c / u t i l s / supabaseCl ient ’
import { PaymentChannelLogDataSchema } from ’@/app/ s r c /components/schema/PaymentChannelDataSchema ’ ;

export async func t ion POST (req : NextRequest) {
t r y {

const bodyJson : PaymentChannelLogDataSchema = await req . j son () ;
const { data , e r ro r } = await supabase

27

. from (’ payment_channels ’)

. i n s e r t (bodyJson)

i f (e r ro r) {
console . log (” i n s e r t e r ro r ” , e r ro r)
re turn NextResponse . j son (

{ message : ”Bad Request ” } ,
{ s t a t u s : 400 }

)
}
re turn NextResponse . j son (

{ message : ” Success ” } ,
{ s t a t u s : 200 }

)
} catch (e r ro r) {

console . e r ro r (” Er ror in POST func t ion : ” , e r ro r) ;
re turn NextResponse . j son (

{ message : ” I n t e r na l Server Error ” } ,
{ s t a t u s : 500 }

)
}

}

export async func t ion GET (req : NextRequest) {
t r y {

console . log (”GET − Received reques t ”) ;
const u r l = new URL(req . u r l) ;
cons t account = ur l . searchParams . get (’ account ’) ;

cons t { data : payment_channels } = await supabase . from (” payment_channels ”)
. s e l e c t (’* ’)
. eq (’ account ’ , account) ;

re turn NextResponse . j son (
{

message : ” Success ” ,
paymentChannelData : payment_channels

} ,
{ s t a t u s : 200 }

)
} catch (e r ro r) {

console . e r ro r (” Er ror in GET func t ion : ” , e r ro r) ;
re turn NextResponse . j son (

{ message : ”Method Not Allowed : (” } ,
{ s t a t u s : 405 }

28

)
}

}

2.4.2 Data Management

In the development phase, we use JSON files, which can store any payment channels opened
and signatures redeemed.
For the web dashboard, we link our project to Supabase, which offers scalable, PostgreSQL-
based databases that provide real-time capabilities, user authentication, and easy integra-
tion with modern web and mobile applications, allowing us to quickly build and deploy
full-fledged applications.
Figure 32 shows the Supabse Table editors, wherewe have three tables in ourweb-dashboard
organization:

1. payment_channels
2. payment_signatures
3. verified_signatures

The schema for payment_channels and verified_channels are
c rea t e t ab l e

pub l i c . payment_channels (
id b i g i n t generated by de f au l t as i d en t i t y ,
c rea ted_a t timestamp with time zone not nu l l de f au l t now() ,
account t e x t nul l ,
con t rac t_addres s t e x t nul l ,
escrow_amount double p r e c i s i on nul l ,
r e c i p i e n t t e x t nul l ,
e xp i r a t i on timestamp with time zone nul l ,
max_payment double p r e c i s i on nul l ,
s t a t u s pub l i c . channe l_ s ta tus nul l ,
c on s t r a i n t payment_channels_pkey primary key (id)

) tab l e space pg_defau l t ;

c r ea t e t ab l e
pub l i c . v e r i f i e d _ s i g n a t u r e s (

id b i g i n t generated by de f au l t as i d en t i t y ,
c rea ted_a t timestamp with time zone not nu l l de f au l t now() ,
con t rac t_addres s t e x t nul l ,
amount double p r e c i s i on nul l ,
account t e x t nul l ,
s i gne r t e x t nul l ,
s i gna tu re t e x t nul l ,
e xp i r a t i on timestamp with time zone nul l ,

29

https://supabase.com/docs/guides/getting-started/quickstarts/nextjs

c on s t r a i n t ve r i f i ed_ s i gna tu r e s_pkey1 primary key (id)
) tab l e space pg_defau l t ;

Figure 32: Supabase Table Editor

30

3 Results
In this project, we successfully created a decentralized application that along with Meta-
Mask can

• Connect to MetaMask
• Deploy payment channels to the Sepolia Testnet
• Interact with deployed payment channels in the Sepolia Testnet
• Create and verifying payment signatures
• View databases with relevant information about ongoing payment channels and pay-

ment signatures
all in a single decentralized application.

4 Discussion
In this project, we successfully condensed the functionalities of four of the five applications,
namely Solidity code, Remix IDE, Sepolia Etherscan, required to create and use a payment
channel into a single decentralized application, which reduces the number of applications
required to just two: MetaMask and this decentralized application. Furthermore, we added
the extra functionality of databases that keep track of ongoing payment channels and pay-
ment signatures.
However, it is currently limited as a one-way payment channel, where a sender can only
send but not receive and a receiver can only receive but not send. Future improvements
to this payment channel might create a two-way payment channel, where both people can
send and receive. If this is possible, the user-interface would have to be updated accordingly.
This application is also limited by using the Sepolia Testnet. Future implementations re-
quire more rigorous thinking about potential bugs and testing along with subsequent fixes
if required before transitioning this application from the Sepolia Testnet to the Ethereum
mainnet. This statement also extends to the Solidity code used for the payment channel
smart contract. This code is from Solidity by Example’s section on micropayment channels.
This code requires more rigorous thinking about potential bugs and testing along with sub-
sequent fixes if required before transitioning this application from the Sepolia Testnet to
the Ethereum mainnet.

References
et al. 2019. “Solidity by Example.”
Nakamoto, Satoshi. 2008. “Bitcoin: A peer-to-peer electronic cash system.”

31

	1 Introduction
	2 Methods
	3 Results
	4 Discussion
	References

